
IJARCCE
ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 5, Issue 3, March 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.53195 813

In-a-Nutshell Document Summarizer

Mrunmayi Anchawale
1
, Shravani Joshi

2
, Rajat Shenoi

3
, Shreya Bamne

4

Student, Information Technology Department, Vidyalankar Institute of Technology, Mumbai, India1,2,3

Lecturer, Information Technology Department, Vidyalankar Institute of Technology, Mumbai, India4

Abstract: Automatic data summarization is part of machine learning and text mining, in which source text is condensed

into a shorter version preserving its information content and overall meaning. First developed as a labour-intensive

manual discipline in the 1980s, text mining has become ever more efficient as computing power has increased. In-A-

Nutshell is an attempt to create a robust automated text summarization system, based on sentence scoring.

Keywords: text mining, summarization, NLP, extraction, abstraction, cue phrases, sentence generation.

I. INTRODUCTION

A. The Concept

Text summarization is the process of searching through
countless pages of plain-language digitized text to find

useful information that‘s been hiding in plain sight. It is

more about finding unseen connections and patterns in

plain-language narratives.

Several existing systems, including some Web browsers,
claim to perform summarization. However, an analysis of

their output shows that their summaries are simply

portions of the text, produced verbatim. While there is

nothing wrong with such extracts, the word ‗summary‘

usually connotes something more, involving the fusion of

various ‗concepts of the text‘ into a ‗smaller number of

concepts‘. Many methods have emerged over time for

generation of summaries.

An extractive method consists of selecting important

sentences, paragraphs etc. from the original document and

concatenating them into shorter form. The importance of

sentences is decided based on statistical and linguistic

features of sentences.

An abstractive method consists of understanding the

original text and re-telling it in fewer words. Abstractive

methods build an internal semantic representation and then

use natural language generation techniques to create a

summary that is closer to what humans might generate.

In addition to extracts and abstracts, summaries may differ

in several other ways. Some of the major types of

summary that have been identified include indicative

(keywords indicating topics) vs. informative (content

laden); generic (author‘s perspective) vs. query-oriented

(user-specific); background vs. just-the-news; single
document vs. multi-document; neutral vs. evaluative.

This process can be used in many applications such as

information retrieval, intelligence gathering, information

extraction, text mining, and indexing [5][7][14]. The texts
that are mined could be newspaper or website articles,

research papers, blog entries, patent applications;

A summary should meet two conditions: maintain a wide

coverage of the document topics and keep low redundancy
at the same time [7][14]. A good generic summary should

contain the major topics of the document and minimize

redundancy. A full understanding of the major dimensions

of variation, and the types of reasoning required to

produce each of them, is still a matter of investigation.

This makes the study of automated text summarization an

exciting area to work in.

B. Overview of In-A-Nutshell

As the problem of information overload has grown with a

large volume of text documents, presenting the user with a

summary of each document greatly facilitates the task of

allowing the user to read less data but still receive the most

important information.

In-A-Nutshell is a java web application that allows users

to upload files of the type .doc, .docx, .txt, .pdf containing

arbitrary English input text and provides both extracted

summary as well as abstracted summary after processing

the input.

Our application is a score based summarization technique

which considers various factors for scoring a sentence like

similarity of words, position relevancy, named entity

recognition and cue phrases, along with some parts of

Natural Language Processing (NLP).

The main objective of In-A-Nutshell is to:

1. Reduce the human effort and time required for the
generation of summary

2. Allow users to obtain a quick overview of a given

document

 Any summary must consists of all the necessary details of
the parent document and the length of summary must be

less than the original document. In the previous

methodology used for this particular task, it was felt that

few of the important sentences were excluded from the

summary due to the fact that their frequency does not

satisfy the threshold value of sentence score because of

usage of different phrases used to represent the same fact.

The proposed technique will remove this problem up to a

certain extent by considering the semantic similarity

between sentences.

In-A-Nutshell makes use of following JAVA libraries:

Apache Lucene Core - Apache Lucene is a high-

performance, full-featured text search engine library

IJARCCE
ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 5, Issue 3, March 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.53195 814

written entirely in Java. It is a technology suitable for

nearly any application that requires full-text search,

especially cross-platform. It has been used here for the

elimination of stop words, which is a part of our
application‘s pre-processing module.

Apache OpenNLP - The Apache OpenNLP library is a

machine learning based toolkit for the processing of

natural language text. It supports the most common NLP
tasks, such as tokenization, sentence detection, part-of-

speech tagging, named entity extraction, chunking,

parsing, and co-reference resolution. These tasks are

usually required to build more advanced text processing

services.

II. THE NEED OF AUTOMATIC SUMMARIZER

Businesses use data and text mining to analyse customer

and competitor data to improve competitiveness; the

pharmaceutical industry mines patents and research

articles to improve drug discovery; within academic

research, mining and analytics of large datasets are

delivering efficiencies and new knowledge in areas as

diverse as biological science, particle physics and media

and communications. Economic, academic and social

activities generate ever increasing quantities of data.

Businesses collect trillions of bytes of information on

customer transactions, suppliers, internal operations and

indeed competitors; the global research community

generates over 1.5 million new scholarly articles per
annum; and social networking sites such as Facebook and

twitter enable users to share over 1.3 billion pieces of

information/content per day. According to the McKinsey

Global Institute's (MGI) 'Big Data' report 6, the generation

of information and data has become a 'torrent', pouring

into all sectors of the global economy and is predicted to

increase at a rate of 40% annually. (Mar 14, 2012).

Exploitation of this vast data and information resource can

generate significant economic benefits, says the report,

including enhancements in productivity and

competitiveness, as well as generating additional value for

consumers.

III. STRUCTURE OF IN-A-NUTSHELL

The design of this application is based on the following

modules:

A. User Interface

B. Pre-processor

C. Sentence connectivity calculator

D. Sentence Scorer

E. Extractor

F. Abstractor

Each module employs several different, complementary,

methods.

A. User Interface

The user interface of our application is divided into two
sections, one for accepting input and the other for

displaying the results.

Input section consists of:

1) Upload button for allowing user to upload a file.

2) List of file types supported for upload.

3) Summarize button to provide the user with extracted as

well as abstracted summary.
4) Statistics button to provide the user with additional

information such as number of words in original text,

number of words in summary, time taken for the

application to generate summary and time taken to

generate same summary manually.

Fig. 1 Overall Methodology of In-A-Nutshell Document

Summarizer

B. Pre-processor

The foundation of a summary is its sentences. Before

generating these sentences, it is necessary to select the

correct sentences from input document and place them in a

desired format, by following a set of pre-processing steps,

namely, sentence detection, tokenization, stop words

removal and word stemming.

1) Sentence Detection:

This step deals with classification of document into

sentences. While doing this, the fact that only a full-stop

IJARCCE
ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 5, Issue 3, March 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.53195 815

does not indicate end of sentence is also considered. The

method used for detection of sentences is ―the longest

white space trimmed character sequence between two

punctuation marks.‖

2) Sentence Tokenization:

This step deals with dividing the sentences into collection

of unique tokens. This is done since text processing

components like part-of-speech taggers, parsers, stemmers

and so on, work with tokenized text.

3) Stop Word Removal:

Sometimes, some extremely common words which do not

contribute to help select sentences which are to be kept in

summary and are of little value are excluded from the

document entirely. These words are called stop words.

Some of the common English stop words include ‗a‘,

‗the‘, ‗is‘, ‗from‘, ‗he‘, ‗will‘ etc. The general strategy for

determining a stop list is to sort the terms by collection

frequency (the total number of times each term appears in

the document), and then to take the most frequent terms.

4) Word Stemming:
Stemming in linguistics refers to the process of obtaining

root form of a word. The goal of stemming is to reduce

inflectional forms and sometimes derivationally related

forms of a word to a common base form. For instance:

am, are, is be

car, cars, car's, cars' car

Stemming is done in order to ensure that two words, which

have the same root word, get the same score in the

Sentence Scorer module.

C. Sentence connectivity calculator

In this module, the similarity (interconnectivity) of each

sentence with every other sentence of the document is
computed. This is known as Sentence-to-Sentence

Cohesion.

Interconnectivity function:

This function receives two sentences, and returns a score

for the intersection between them. We just split each
sentence into words/tokens, count how many common

tokens we have, and then we normalize the result with the

average length of the two sentences.

f (s1, s2) = |{w | w in s1 and w in s2}| / ((|s1| + |s2|) / 2)

In the first step we split the text into sentences, and store

the intersection value between each two sentences in a

matrix (two-dimensional array). So values[0][2] will hold

the intersection score between sentence #1 and sentence

#3. In the second step we calculate an individual score for

each sentence and store it in a key-value dictionary, where

the sentence itself is the key and the value is the total

score. We do that just by summing up all its intersections

with the other sentences in the text (not including itself).

D. Sentence Scorer

In this module, features influencing the relevance of

sentences are decided and then scores are assigned to these

features. Final score of each sentence is determined by

adding scores from each feature. Top ranked sentences are

selected for final summary.

The scoring mechanism of In-A-Nutshell awards certain

points to a pre-processed sentence based on following

features:

1) Position-of-sentence feature:

This method exploits the fact that in some genres, certain
sentence positions tend to carry more topic material than

others [5][7]. Optimal Position Policy (OPP) is defined as

a list that indicates in what ordinal positions in the text,

high-topic bearing sentences occur. This work, described

in [22], is the first systematic study and evaluation of the

Position method reported.

For the Ziff-Davis corpus (13,000 newspaper articles

announcing computer products) research has found that

the OPP is [T1, P2S1, P3S1, P4S1, P1S1, P2S2, {P3S2,

P4S2, P5S1, P1S2}, P6S1,…] i.e., the title (T1) is the most

likely to bear topics, followed by the first sentence of

paragraph 2, the first sentence of paragraph 3, etc. In

contrast, for the Wall Street Journal the OPP is [T1, P1S1,

P1S2, ...]

Generalizing this approach to all topics, it is found that

sentences occurring in initial and final position of entire
document(i.e. the first and last sentence) as well as first

sentence of individual paragraphs have a higher

probability of being relevant, and hence they obtain a

higher score.

2) Sentence Length Cut-O Feature:

Sentences containing less than a pre-specified number of

words are not included in the summary

3) Upper-case word feature:

Sentences containing acronyms are given a higher score.

4) Font based feature:

Sentences containing words appearing in upper case, bold,

italics or underlined fonts are usually more important, and

hence are given higher score.

5) Sentence Connectivity Score

This feature calculates total connectivity score of a

sentence, which is the sum of the relative connectivity

scores, obtained from Sentence Connectivity Calculator,

mentioned above.

6) Named Entity feature:

Sentences that contain Proper nouns, Names of people,

Places and Dates are considered as important and are
given a higher score.

7) Sentence with figures feature:

Writing a scholarly manuscript often requires the use of

numbers to express important information, particularly in

the science field. Also, news articles and articles related to

stock market are full of numbers. Our application

considers figures as an important parameter to score the

sentences.

8) Title word feature:

If the user input document comes with an already available

title, then the sentences in the document which contain

words that appear in the title are also indicative of the

theme of the document. These sentences have higher

chances of inclusion in summary.

IJARCCE
ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 5, Issue 3, March 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.53195 816

9) Cue-Phrase feature:

Phrases such as ‗in summary‘, ‗in conclusion‘, and

superlatives such as ‗the best‘, ‗the most important‘ can be

good indicators of important content in a document
[6][21]. Cue phrases are generally genre dependent.

For example, ‗rise‘ and ‗theses‘ would be present in

documents related to stock market and scientific literature

respectively. After careful research on a number of

documents of various genres, we have successfully

developed a list of 510 generalised cue phrases applicable

to any document of any genre. Our application uses this

research as a foundation for scoring of sentences, which

includes cue phrases like ‗this paper‘, ‗this article‘, ‗the

fact‘, ‗outline‘, ‗proof‘ to name a few.

In-A-Nutshell divides the cue phrases into three categories

based on their importance.

Category 1: It includes cue phrases that are best indicators

of important content which simply must appear in the

summary. Sentences containing cue phrases from this

category are given the highest score. Examples include ‗as

a result‘, ‗defined‘, ‗important‘ etc.

Category 2: It includes cue phrases whose roles differ

according to context i.e. cue phrases that appear to be very

important in one context but not so important in another

context. Sentences containing cue phrases from this

category are given a medium score. Examples include

‗recently‘, ‗although‘, ‗classify‘ etc.

Category 3: It includes cue phrases that might give a slight

clue about the overall topic of any user document.

Sentences containing cue phrases from this category are

given the least score. Examples include ‗likewise‘, ‗relate‘
etc.

Our application also considers the position dependency of

a cue phrase and scores it accordingly. For example, the

sentence ―Starters would be served first‖ is not in the same

importance class as ―The first person to go on moon was

Neil Armstrong‖

For more accuracy, our application assumes that a

sentence containing many cue phrases from category 3 are

of the same importance as that of a sentence containing

only one cue phrase of category 2, and hence they are

scored equally. This is the NP-IP condition (i.e. the
number of cue phrases in a sentence as well as their

importance is considered)

10) Quoted text feature:

The sentences having quotes are also given higher score. If

an entire sentence is in quotes and it contains words such

as ‗I‘, ‗you‘, ‗we‘ etc, our application regards this as a

conversation sentence and does not give a higher score to

it.

11) Question based feature:

If a sentence is interrogative, then this sentence and its

next one are given a high score. This is based on the fact

that the next sentence of an interrogative sentence might

contain answer to the question asked in previous sentence.

For example, ―What is a database? A database is a

collection of information that is organized so that it can

easily be accessed, managed, and updated.‖ However,

rhetorical questions are not given any weightage.

12) First-sentence overlap feature:

As discussed earlier, the first sentence of the document has
a higher probability of being relevant for the summary.

This feature checks how much similar (closer in meaning)

is each sentence to the first sentence.

E. Extractor

The scored sentences are given to the Extractor module.

This module picks out the sentences in descending order

of their scores. The user is given the choice of selecting

what percent of summary he/she wants (the default being

40%)

F. Abstractor

In-A-Nutshell uses Markov chains to generate new

sentences from existing ones.

There are many real-world scenarios where it's useful for a

program to create new sentences. For example, Google

Translate analyzes a sentence in a foreign language, and

generates a new sentence in English with the same

meaning. Siri listens to questions, and generates new

sentences that answer those questions. When programs

generate sentences, they usually follow a simple trick.
First, they analyze lots of existing sentences that are

similar to what they want to generate, and record which

words and phrases occur frequently. Then, they randomly

choose phrases that occur, and rearrange them in a way

that makes sense. Markov chains are the simplest way to

generate sentences that almost make sense, but really

don‘t. They are based on figuring out the likelihood of a

word following another word by looking at existing bodies

of text (for example, Wikipedia).

Then, to generate sentences you choose a starting word

and based on a random variable as well as the probabilities

that you‘ve found by looking at existing text, you choose a

word following that starting word and repeat.

In the 1948 landmark paper ‗A Mathematical Theory of

Communication‘, Claude Shannon founded the field of

information theory and revolutionized the

telecommunications industry, laying the groundwork for

today's Information Age. In this paper, Shannon proposed

using a Markov chain to create a statistical model of the

sequences of letters in a piece of English text. Markov

chains are now widely used in speech recognition,

handwriting recognition, information retrieval, data
compression, and spam filtering.

The basic steps of creating Markov chains are:

1. Select a random starting word to start a new sentence.

2. From all the words that ever follow that word in the

input sequence, choose one. Add that word to the end of

our new sentence.

3. Continue selecting randomly from the words that can

possibly follow the current last word of our sentence

until either there are no possible choices or we have

made a sentence as long as desired.

IJARCCE
ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 5, Issue 3, March 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.53195 817

Fig. 2 A graphical representation of the Markov

possibilities for ―Hello, how are you?‖ and ―Where are my

keys?‖

E.g. consider two sentences ―Hello, how are you‖ and

―where are my keys‖. If we convert these sentences into a

graph showing the possible results, we would get Figure 2

In this graph, each arrow represents a choice we can take

based on the last word we added to our sentence,

continuing until there are no valid paths to take. Looking

at the graph, there are four possible outputs if we start our
chain with either ―Hello,‖ or ―Where‖:

• Hello, how are you?

• Hello, how are my keys?

• Where are you?

• Where are my keys?

IV.RESULTS

Fig 3. Original document

Fig 4. Summary

IJARCCE
ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 5, Issue 3, March 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.53195 818

V. CONCLUSION AND FUTURE SCOPE

In this paper a single document sentence scoring based

text summarization algorithm is introduced. The result

shown by this technique is found to be more efficient than

the previously used technique which considers the

frequency of text only. Semantic similarity is also used in

this algorithm. The proposed algorithm is implemented

using java platform and is verified over the standard text
mining corpus. The discovered results are interesting and

gist of the summarized document is also preserved. The

future direction for the proposed work is to apply the

similar concept in multi-document summarization. We are

also looking forward to extending our system to facilitate

search engine optimization (selection of precise and

relevant web pages or documents) based on a user query.

Automated summarization is an old topic (work on it dates

from the 1950‘s) and a new topic as well. It is so difficult

that an interesting headway can be made for many years to

come. We are excited about the possibilities offered by the

combination of semantic and statistical techniques in what

is, quite possibly, the most complex task of all NLP.

ACKNOWLEDGMENT

The authors would like to thank all reviewers who have

provided constructive feedback on this paper.

REFERENCES

[1] Gobinda G. Chowdhury, ―Natural Language Processing‖, Annual

Review of Information Science and Technology, Vol: 37, pp: 51–

89, 2003.

[2] Inderjeet Mani, ―Recent Developments in Text Summarization", In

Proceedings of the tenth international conference on Information

and knowledge management, ACM Press, pp: 529 - 531, 2001.

[3] Yan Liu, Sheng-hua Zhong, Wen-jie Li, "Query-oriented

Unsupervised Multi-document Summarization via Deep Learning",

Under review in Journal of Neural Networks (NN).

[4] M. S. Binwahlan, N. Salim, L. Suanmali, ―Intelligent Model for

Automatic Text Summarization‖, Information Technology Journal,

pp: 1249-1255, 2009.

[5] H. Luhn, ―The automatic creation of literature abstracts‖, IBM

Journal of Research and Development, Vol: 2, Number: 2, pp: 159-

165, 1958.

[6] H. Edmundson, ―New methods in automatic extracting‖, Journal of

the Association for Computing Machinery, Vol: 16, No. 2, pp: 264-

285, 1969.

[7] I. Mani, M. Maybury, ―Advances in Automatic Text

Summarization‖, MIT Press, 1999.

[8] Michel Gagnon, Lyne Da Sylva, ―Text Summarization by Sentence

Extraction and Syntactic Pruning‖, In Proceedings of

Computational Linguistics in the North East, 2005.

[9] Kevin Knight, Daniel Marcu, ―Summarization beyond sentence

extraction:A probabilistic approach to sentence compression‖, In

Artificial Intelligence, Vol: 139, Issue 1, pp: 91–107, 2002.

[10] J. Goldstein, V. Mittal, J. Carbonell, and M. Kantrowitz, ―Multi-

document summarization by sentence extraction‖, ANLP/NAACL

Workshop, pp: 40–48, 2000.

[11] Naresh Kumar Nagwani, Dr. Shrish Verma, ―A Frequent Term and

Semantic Similarity based Single Document Text Summarization

Algorithm‖, International Journal of Computer Applications (0975

– 8887) Volume 17– No.2, March 2011.

[12] Dragomir R. Rade and Weiguo Fan and Zhu Zhang,

―WebInEssence: A Personalized Web-Based Multi Document

Summarization and Recommendation System‖

[13] Goldstein J., Kantrowitz M., MittalV., Carbonell J.:Summarizing

Text Documents: Sentence Selection and Evaluation Metrics.

Proceedings of the 22th ACM SIGIR, 121-127, (1999).

[14] I. Mani, Automatic Summarization, John Benjamins Publishing Co.

(2001) 1-22.

[15] Mitra M., Singhal A., Buckley C.: Automatic Text Summarization

by Paragraph Extraction. Proceedings of

theACL‘97/EACL‘97Workshop on Intelligent Scalable Text

Summarization, pp. 31–36 (1997).

[16] Rafeeq Al-Hashemi, "Text Summarization Extraction System

(TSES) Using Extracted Keywords", International Arab Journal of

e-Technology, Vol. 1, No. 4, June, pp. 164-168, (2010).

[17] Wooncheol Jung, Youngjoong Ko, and Jungyun Seo, "Automatic

Text Summarization Using Two-Step Sentence Extraction", AIRS

2004, LNCS 3411, pp. 71 – 81, (2005).

[18] Yulia Ledeneva, Alexander Gelbukh, and René Arnulfo García

Hernández, "Terms Derived from Frequent Sequences for

Extractive Text Summarization", CICLing 2008, LNCS 4919, pp.

593–604, (2008).

[19] ArchanaAB,Sunitha 2013 An overview on document

summarization technique. International Journal on Advanced

Computer Theory and Engineering (IJACTE), Volume-1, Issue-2.

[20] A.P. Siva Kumar, Dr. P. Premchand, Dr. A Govardhan 2011 Query-

Based Summarizer Based on Similarity of Sentences and Word

Frequency. International Journal of Data Mining & Knowledge

Management Process (IJDKP) Vol.1, No.3.

[21] Baxendale, P.B. October 1958. Machine-made index for technical

literature—an experiment. IBM Journal (354–361).

[22] Lin, C.Y. and E.H. Hovy. 1997. Identifying Topics by Position.

Proceedings of the Applied Natural Language Processing

Conference, Washington, DC.

